

Remote Operation

for

StoreX

Precision Incubator Series

DISCONTINUATION: This Interface is no longer supported Do not use for new development

STX40, STX100, STX200, STX500, STX1000 IC, HC, HR, DC, DR, DF SA, BT, IT STP1000

Important Notice

© 1993-1995, 1995-1999, 2000, 2001, 2002, 2005, 2006, 2009, 2020 LiCONiC AG Liechtenstein, all rights reserved.

The Information contained in this document is subject to change without notice.

Information provided by LiCONiC AG is believed to be accurate and reliable. However, the user is responsible for the proper and correct use of the product. No license is granted by acquisition of the product for any patent or patent rights of LiCONiC. If the user does not follow the instructions given in this manual, LiCONiC does not take any responsibility for injuries or damages caused by the LiCONiC product.

Contact Address

LiCONiC AG Industriestrasse 8 FL – 9493 Mauren Principality of Liechtenstein

Telephone: +423 373 63 39
Telex: +423 373 53 59
E-mail: info@liconic.com
Internet: www.liconic.com

Before operating the instrument, the user must read and understand this manual.

Installation and Servicing

Installation, servicing and reinstallation of the instrument shall only be performed by System Integrators and / or service personnel authorized by LiCONiC AG.

LiCONiC regularly offers Operator Training Courses. We highly recommend the attendance of such a course prior to working with a LiCONiC Instrument.

Table of Contents

1.	Remote Operation	5
1.1	RS-232 Serial Port Configuration	5
1.2	Command Transmission Procedure	5
	Commands	
1.4	Handling Status / Error Messages	19
	Program Examples	
	Utility Software	

History Page

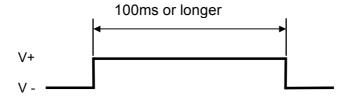
Document Change History

Date	Version	Changes	Author
26.11.2020	V7.12	Discontinuation: This interface is not Supported anymore	Ralf Kindle

1. Remote Operation

1.1 RS-232 Serial Port Configuration

```
ASCII data format
Full duplex
PC: Delimiter CR (Chr 13h)
PLC: Delimiter CR,LF (Chr 13h,10h)
9600 Baud
8 Data bits
1 Stop bit
Parity even
```


The example program shows how the comport is initialized under MS-DOS. For details refer to the MS-DOS manuals.

```
FUNCTION STX_InitCom(pN:INTEGER):INTEGER;
VAR n:INTEGER;
BEGIN
n:=ModeCom(pN,9600,'E',8,1);
STX_InitCom:=n
END;
```

1.2 Command Transmission Procedure

1.2.1 Brake Signal

The controller serial port is reset by sending a 'Brake Signal'. The specification of the Brake Signal is given below.

In most cases the Brake Signal can be omitted. The example program shows how a Brake Signal can be implemented under MS-DOS. The example program consists of two procedures where the inner procedure "LCR_Brake" is called by the outer procedure ("STX_ComReset"). Note that this program will directly address the comport chip. There may be operating systems that will not allow the chip to be addressed directly.

```
PROCEDURE STX_ComReset(pn:INTEGER);
   PROCEDURE LCR_Brake(rAdr,tme:INTEGER);
   BEGIN
      Port[rAdr]:=Port[rAdr] OR $40; Delay(tme); {Bit6=Brake} Port[rAdr]:=Port[rAdr] AND $BF; Delay(2);
   END;
BEGIN
   CASE pN OF
   1: LCR_Brake($3FB,500);
   2: LCR_Brake($2FB,500);
   END;
END;
```


1.2.2 Command Definition

A command is any string that is recognized and interpreted by the controller logic. Commands consist of one or more ASCII sub-strings separated by a space character.

1.2.3 Operation Definition

Operations are physically executable commands. Operations are triggered by one or by a set of commands. A set of commands consists of two or more commands separated by an ASCII carriage return character.

1.2.4 Response Definition

A Response is a string sent by the controller logic following a previously sent command.

Command: PC --> Controller
Resonse: PC <-- Controller

1.2.5 Command Syntax

For communication only a few commands are required. A command is an ASCII-string which is sent to the controller. Response is an ASCII string sent by the controller. Note that each command is prompted by a Response string.

A command consists of command segments. The first command segment defines the intention of the command. Command segments are separated by Space (ASCII 20h). Response Segments are separated by comma (ASCII 1Ch). The table below gives a list of abbreviations used later on.

Command Segment	Mnemonics
Communication Request	CR
Communication Quit	CQ
Communication Clear	CC
Communication Finished	CF
Set	ST
Reset	RS
Read	RD
Write	WR
Write Set	WS
Data Memory	DM
Timer	Т
Space ASCII 20h	sn
Line Feed ASCII 0Ah	sp If
Carriage Return ASCII 0Dh	cr

The following example program shows how a string sent to the StoreX controller can be generated and sent. The "STX_SendStr" will allow a string "s" to be sent through port "pN". The result of the function may be used for error handling. Note that the string "s" does not require any delimiter. The delimiter is added inside the function. The "auxStrAut" may be any low level or DOS procedure that supports the transmission through the comport.

```
FUNCTION STX_SendStr(pN:INTEGER; s:STRING):INTEGER;
VAR ss:STRING;
BEGIN
   STX_SendStr:=0;
   ss:=Concat(s,cr);
   auxStrOut(pN,ss)
END;
```

Since every command is prompted by the StoreX it makes sense to introduce a procedure that handles this send-receive sequence. A possible solution is given below.

```
FUNCTION STX_ReadBackStr(pN:INTEGER; s:STRING):STRING;
  CONST tries=2;
  VAR i,n,m,err:INTEGER; w:WORD; s0,s1:STRING; c,kp:CHAR;
  BEGIN
    IF NOT(kbdEsc) THEN
      BEGIN
         EmptyAux(pN);
         i:=-1;
         s0:=s;
         m := Pos('-',s0);
         IF m>0 THEN
           BEGIN
             Delete(s0,m,1);
             s1:=Copy(s0,m,Length(s0));
             Val(s1,n,err);
             Delete(s0,m,Length(s0));
             w:=-n; Str(w,s1); s0:=s0+s1
           END;
         REPEAT
           Inc(i);
           EmptyAux(pN); auxStrOut(pN,s0+cr);
           IF i>3 THEN DelayMs(100);
         auxStrIn(pN,s1,5,1f);
Delete(s1,PRED(Length(s1)),2)
UNTIL (s1[1]<>'E') OR (i>tries) OR KbdEsc;
         STX_ReadBackStr:=s1;
      END
    ELSE
      STX_ReadBackStr:=''
  END;
```

1.2.6 Open / Close Communication

Prior to communication with the controller, the communication has to be opened. Before communication is opened, the controller only accepts the Open Communication Command (CR). For improved safety, it is recommended that communication is closed (CQ) when no communication is required for a long period of time.

communication to required for a long pomod of time.		
	Command	Response
Open Communication	CR cr	CC cr If
Send Commands (see below)		
Close Communication	CQ cr	CF cr If

The two example programs show how to open and close communication to the StoreX.


```
FUNCTION STX_OpenCom(pN:INTEGER):STRING;
   BEGIN
   STX_OpenCom:=STX_ReadBackStr(pN,'CR')
   END;
```

Time out functions and communication error can be trapped at this level.

```
FUNCTION STX_CloseCom(pN:INTEGER):STRING;
   BEGIN
   STX_CloseCom:=STX_ReadBackStr(pN,'CQ')
   END;
```

These examples show how simple communication becomes when using the "STX_ReadBack" procedure. The following example explains how often used sequences are programmed. The 'Set-'procedure sets an internal relay (or flag). The value of the flag becomes '1'. The 'Reset-'procedure resets an internal relay (or flag) . The value of the flag becomes '0'. Flags can be set, reset or read.

```
FUNCTION STX_Set(pN,rel:INTEGER):STRING;
 VAR sR:STRING;
 BEGIN
    Str(rel,sR);
    STX_Set:=STX_ReadBackStr(pN,'ST '+sR)
FUNCTION KV_Reset(pN,rel:INTEGER):STRING;
 VAR sR:STRING;
 BEGIN
    Str(rel,sR);
   STX_Reset:=STX_ReadBackStr(pN,'RS '+sR)
 END;
FUNCTION STX_Read(pN,rel:INTEGER):STRING;
 VAR sR:STRING;
 BEGIN
    Str(rel,sR);
    STX_Read:=STX_ReadBackStr(pN,'RD '+ sR)
```

The Set and Reset will return an 'OK'-response if operation is successful. The Read-procedure will return a '0' or '1'.

Data memories are 16 bit oriented. They can be read or written. The following examples show how to use the data memories.

```
FUNCTION STX_ReadDataMemory(pN,nbr:INTEGER):STRING;
    VAR sR:STRING;
    BEGIN
        Str(nbr,sR);
        STX_ReadDataMemory:=STX_ReadBackStr(pN,'RD DM'+ sR)
    END;

FUNCTION STX_WriteDataMemory(pN,nbr:INTEGER; valu:WORD):STRING;
    VAR sR,sV:STRING;
    BEGIN
        Str(nbr,sR); Str(valu,sV);
        STX_ReadDataMemory:=STX_ReadBackStr(pN,'WR DM'+ sR + ' ' + sV)
    END;
```

Note that the Response on the above Write procedure is always 'OK'. The Read procedure will return a five-character-string.

1.2.7 Controller Error Messages

The following Error Codes are sent by the PLC. These error codes indicate system-errors and are not the same as the Instruments own error-messages (refer to "Handling Error Messages")

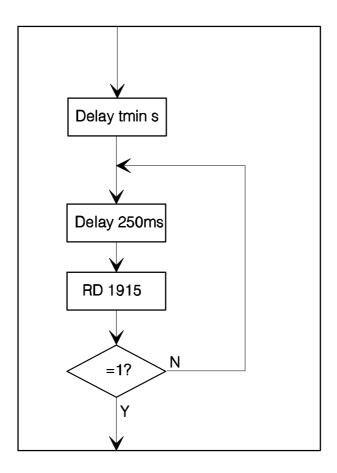
Error	Comment	Response
Relay Error	Undefined timer, counter, data memory, check if requested unit is valid	E0 cr If
Command Error	Invalid Command, check if communication is opened by CR, check command sent to controller, check for interruptions during string transmission	E1 cr lf
Program Error	Firmware lost, reprogram controller	E2 cr If
Hardware Error	Controller hardware error, turn controller ON/OFF, controller is faulty and has to be replaced	E3 cr If
Write Protected Error	Unauthorized Access	E4 cr If
Base Unit Error	Unauthorized Access	E5 cr If

1.2.8 List of Operations

Operations are physically executable commands. Operations are triggered by one or by a set of commands. A set of commands consists of two or more commands separated by an ASCII carriage return character. Prior completing a set of commands for an operation the Ready bit (1915) must be '1' except for Reset command (ST 1900) and the Soft Reset Command (ST 1800).

Operation	Command Sequence
Reset	ST 1900
Soft Reset	ST 1800
Continue Access (used in conjunction with special configuration flags)	ST 1902
Abort access (used in conjunction with special configuration flags)	ST 1903
Position Carrousel	WR DM0 x
Lift Positioning (when 1910 set only)	WR DM5 y
Initialize	ST 1801
Import Plate	WR DM0 x
	WR DM5 y
	ST 1904
Export Plate	WR DM0 x
	WR DM5 y
	ST 1905
Pick Plate	WR DM0 x
	WR DM5 y
	ST 1908
Place Plate	WR DM0 x
	WR DM5 y
	ST 1909

Get Plate	WR DM0 x
	WR DM5 y
	ST 1907
Put Plate	WR DM0 x
	WR DM5 y
	ST 1906
BarCode Search	ST 1710
Short Import	WR DM10 p
Short Export	WR DM15 n


1.2.9 System Status

The Handling response on Ready-Polling ("x") is '0' (handling not ready to accept commands) or '1' (handling ready, command may be sent). In its idle status the handling sets the Ready Bit to '1'.

	Command	Response
Read Ready-Bit	RD sp 1915 cr	x cr lf

When polling the Ready Bit after sending a command, wait at least 200ms before requesting the Ready Status. We recommend to wait 100ms – 200ms between polling sequences.

Ready Polling

A sample program will explain the polling sequence in detail. Note that monitoring a flag change either from '0' to '1' or from '1' to '0' may also be advisable.


```
PROCEDURE STX_WaitReady(portNbr:INTEGER);
  BEGIN
    DelayMs(300);
WHILE (STX_Read(portNbr,1915)='0') AND NOT(KeyPressed) DO
       DelayMs(\overline{200})
  END;
```


Note!

- An Operation may only be executed when Ready Bit equals '1' (RD 1915)
- > Allow >200ms delay between last command sent for execution of an operation and the first Ready Bit request.
- Use 100ms..200ms delay between requests.

Commands 1.3

1.3.1 **Basic Commands**

	Command	Response
Reset	ST <i>sp</i> 1900 <i>cr</i>	OK cr If
Read Ready Flag	RD sp 1915 cr	x ¹ cr If
Read Error Flag	RD sp 1814 cr	x cr If
Read Plate-Ready Flag	RD <i>sp</i> 1815 <i>cr</i>	x cr If
Thead Fidic Reddy Fidg	TRE OF TOTO OF	X OI II
Initialize Handling System	ST <i>sp</i> 1801 <i>cr</i>	OK cr If
Set stacker slot position m (0m)	WR sp DM0 sp m cr	OK cr If
Set Handler level position n (1n)	WR sp DM5 sp n cr	OK cr If
Set Handler Stacker Pitch	WR sp DM23 sp p cr	OK cr If
Open Gate ²	ST <i>sp</i> 1901 <i>cr</i>	OK cr If
Close Gate ³	ST sp 1902 cr	OK cr If
0.000 04.0	0 1 0p 1002 0,	010 11
Terminate Access	ST sp 1903 cr	OK cr If
Import plate to m,n*)	ST <i>sp</i> 1904 <i>cr</i>	OK cr If
Export plate from m,n*)	ST <i>sp</i> 1905 <i>cr</i>	OK cr If
Set plate to x-fer station m,n*)	ST <i>sp</i> 1906 <i>cr</i>	OK cr If
Get plate from x-fer station m,n*)	ST <i>sp</i> 1907 <i>cr</i>	OK cr If
Pick plate form stacker, level m,n*)	ST <i>sp</i> 1908 <i>cr</i>	OK cr If
Place plate to stacker, level m,n*)	ST sp 1909 cr	OK cr If
Position z-Lift for BCR reading m,n*)	ST <i>sp</i> 1910 <i>cr</i>	OK cr If
Activate Shovel Transfer Sensor (70° C HT Version)	ST sp 1911 cr	OK cr If
Read Swap Station position	RD sp 1912 cr	x cr lf
Rotate Swap Station 180 degree	ST sp 1912 cr	OK cr If
Rotate Swap Station back to home position	RS sp 1912 cr	OK cr lf
Read Shaker status	RD sp 1913 cr	OK cr lf
Activate Shaker	ST sp 1913 cr	OK cr lf
ı	•	. '

³ Continue access on Handshake Mode

¹ x = Response expect '0' or '1'
² Continue access on Gate Mode 1

		DISCON
Stop Shaker	RS sp 1913 cr	OK cr If
Read 2 nd Transfer Station Sensor	RD <i>sp</i> 1807 <i>cr</i>	x cr If
Read Cassette Plate Presence Sensor	RD <i>sp</i> 1808 <i>cr</i>	x cr lf
Read User Door Switch	RD <i>sp</i> 1811 <i>cr</i>	x cr lf
Read Shovel Plate Sensor	RD <i>sp</i> 1812 <i>cr</i>	x cr lf
Read Transfer Station Plate Sensor	RD sp 1813 cr	x cr lf
Read Actual Temperature (1/10° Celsius)	RD DM982 <i>cr</i>	ttttt¹ cr If
Read Set Temperature value (1/10° C; e.g. 370	RD DM890 <i>cr</i>	sssss ² cr lf
= 37.0° Celsius)	TAB BINISCO OF	33333 61 11
Set operation temperature (1/10° C)	WR DM890 sp ttttt cr	OK cr If
Read Actual Humidity (1/10% RH)	RD DM983 <i>cr</i>	ttttt cr If
Read Set Temperature value (1/10% RH; e.g.	RD DM893 <i>cr</i>	sssss cr lf
900 = 90.0% RH)		
Set operation humidity (1/10% RH)	WR DM893 sp ttttt cr	OK cr If
Read Actual CO2 level (1/100% vol.)	RD DM984 <i>cr</i>	ttttt cr If
Read Set CO2 level (1/100% vol. 500 = 5.0%	RD DM894 cr	sssss cr lf
CO2)		
Set operation CO2 level (1/100% vol.)	WR DM894 sp ttttt cr	OK cr If
Read Actual N2 / O2 level (1/100% vol.)	RD DM985 <i>cr</i>	ttttt cr If
Read Set N2 / O2 level (1/100% vol. 9000 =	RD DM895 cr	sssss cr lf
90.0% N2)		
Set operation N2 / O2 level (1/100% vol.)	WR DM895 sp ttttt cr	OK cr If
Read Actual N2 / O2 level (1/100% vol.) 3	RD DM986 <i>cr</i>	ttttt cr If
Read Set N2 / O2 level (1/100% vol. 9000 =	RD DM896 cr	sssss cr lf
90.0% O2) ⁴		
Set operation N2 / O2 level (1/100% vol.) ⁵	WR DM896 sp ttttt cr	OK cr If

The stacker slot is selected by sending m=1..2. The handler is positioned towards the specified slot. Note that stacker levels are numbered starting at the bottom level upwards. Bottom level is 1.

The Activate Handler-Command initializes the handling. Use the Activate Handler Command after cold-start or after sending a Reset Command. The Activate Handler Command should not be used as an 'on-off' function.

Functions marked with *) can only be used with selected stacker slots. The value of the number of stackers is stored in DM29. The value of the number of levels is stored in DM25. When using the Position z-Lift for BCR reading command the ST 1910 command has to be sent only once. Once set, the handler is positioned by simply writing the carrousel and level position into DM0 and DM5.

The Activate Plate Sensor command is used in HT-units only. In HT units the Shovel Plate Sensor is deactivated by default. The Activate Plate Sensor command has to be sent prior to reading the sensor status (ST 1911). This command will turn the sensor on for ~2 seconds. The sensor can be read during this period of time. After turning the sensor on wait approximately 0.1 of a second before reading the sensor with the RD 1812 command. The Error-Flag is set when the handling cannot finish a movement in time. Check the Error-Flag by sending "RD 1814" when the Ready-Bit does not become '1'.

⁵ Used when O2 *and* N2 option is present, N2 gas is connected to N2-, O2 is connected to O2-inlet

¹ t = actual value 5 characters (Word=16Bit)

² s = set value 5 characters (Word=16Bit)

³ Used when O2 and N2 option is present, N2 gas is connected to N2-, O2 is connected to O2-inlet

⁴ Used when O2 and N2 option is present, N2 gas is connected to N2-, O2 is connected to O2-inlet

The Plate Ready flag (1815) is set when the system has cleared the plate from the Transfer Station on executing an Import command or when a plate is placed on the Transfer Station during an Export command. This Plate Ready flag allows increased access speeds. The read Plate Ready (RD 1815) returns '1' until the read Ready flag (RD 1915) is set to '1'.

1.3.2 Examples of Usage of Basic Commands

The following example strings show the usage of the basic commands. To initialize the system after a cold-start or a reset you may send:

Command	Response	Comment
ST <i>sp</i> 1801 <i>cr</i>	OK cr If	Initialize Command

Prior to sending an initialization command you may request the system status by reading the Ready Flag:

Command	Response	Comment
RD <i>sp</i> 1915 <i>cr</i>	'1' <i>cr If</i>	System Ready
RD <i>sp</i> 1915 <i>cr</i>	'0' <i>cr If</i>	System Busy

To import a plate from the Transfer Station to level 10 in the stacker at slot 2. The command to be sent is:

Command	Response	Comment
WR sp DM0 sp 2 cr	OK cr If	Position rotation at slot 2
WR sp DM5 sp 10 cr	OK cr If	Select level 10 in stacker
ST <i>sp</i> 1904 <i>cr</i>	OK cr If	Import Command to start import process

To export a plate form level 22 in the stacker at slot 1 and place it on the Transfer Station, the command strings to be sent are:

Command	Response	Comment
WR sp DM0 sp 1 cr	OK cr If	Position rotation at slot 1
WR sp DM5 sp 22 cr	OK cr If	Select level 22 in stacker
ST <i>sp</i> 1905 <i>cr</i>	OK cr If	Export Command to start export process

If you simply want to remove a plate from the shovel by placing it on the transfer station you may send:

Command	Response	Comment
WR sp DM0 sp 1 cr	OK cr If	Position rotation at any position; must be
		defined
WR sp DM5 sp 1 cr	OK cr If	Select any level
ST sp 1906 cr	OK cr If	Start execution of setting plate from the
		shovel to the Transfer Station

Remember that Slot Position and Level Position must also be set at the "ST 1906" and "ST 1907" command.

In order to transport one plate from level 15 of stacker 2 to level 17 of the same stacker 2 the following sequence has to be sent:

Command	Response	Comment
WR sp DM0 sp 2 cr	OK cr If	Position rotation at slot 1
WR sp DM5 sp 17 cr	OK cr If	Pick plate from level 17 of stacker 2

ST sp 1908 cr	OK cr If	Start execution of Pick plate from leve					
		17 of stacker on the Shovel					
RD <i>sp</i> 1915 <i>cr</i>	'0' <i>cr If</i>	System busy executing command					
RD <i>sp</i> 1915 <i>cr</i>	'1' <i>cr If</i>	System Ready for next command					
WR sp DM5 sp 15 cr	OK cr If	Select level 15					
ST <i>sp</i> 1909 <i>cr</i>	OK cr If	Place command to place plate from					
		shovel to the stacker					

Please note that the slot position value in DM0 and / or the level information in DM5 remains in the Data Memories after completion of command. Therefore in above example the "WR DM0 1" needs not to be sent again.

1.3.3 Extended Commands

	Command	Response
Read Error Flag (default =0)	RD sp 1814 cr	x cr lf
Reset "Water Low" Alarm Reset CO2 (Gassing 1) Timeout Error	RS 1505 cr RS 1504 cr	OK cr If OK cr If
Read Two Way Communication Activation Flag (default =0)	RD sp 1200 cr	x cr lf
Set Two Way Communication Activation Flag (default =0)	ST sp 1200 cr	OK cr If
Reset Two Way Communication Activation Flag (default =0)	RS sp 1200 cr	OK cr If
Read Flag: Send Handling Progress Status <spx> (default =0)</spx>	RD sp 1201 cr	x cr lf
Set Flag: Send Handling Progress Status <spx> (default =0)</spx>	ST sp 1201cr	OK cr If
Reset Flag: Send Handling Progress Status <spx> (default =0)</spx>	RS sp 1201 cr	OK cr If
Read Flag: Send Climate Data <cxd> (default =0)</cxd>	RD sp 1213 cr	x cr lf
Set Flag: Send Climate Data <cxd> (default =0)</cxd>	ST sp 1213 cr	OK cr If
Reset Flag: Send Climate Data <cxd> (default =0)</cxd>	RS sp 1213 cr	OK cr If
Read Flag: Send Plate Sensor Status Changes <snx> (default =0)</snx>	RD sp 1214 cr	x cr lf
Set Flag: Send Plate Sensor Status Changes <snx> (default =0)</snx>	ST sp 1214 cr	OK cr If
Reset Flag: Send Plate Sensor Status Changes <snx> (default =0)</snx>	RS sp 1214 cr	OK cr If
Read Flag: Send System Status Byte Changes <syx> (default =0)</syx>	RD sp 1215 cr	x cr lf
Set Flag: Send System Status Byte Changes < SYX> (default =0)	ST sp 1215 cr	OK cr If
Reset Flag: Send System Status Byte Changes <syx> (default =0)</syx>	RS sp 1215 cr	OK cr If
Read Auto-End-Access Flag (default =1) Set Auto-End-Access Flag (default =1)	RD sp 1600 cr ST sp 1600 cr	x cr lf OK cr lf
Reset Auto-End-Access Flag (default =1)	RS sp 1600 cr	OK cr If

		DISCONTI
Read Gate Mode 1 Flag (default=0), wait	RD <i>sp</i> 1601 <i>cr</i>	x cr If
behind Gate for ST 1901	OT 4004	01/ 1/
Set Gate Mode 1 Flag (default =0)	ST sp 1601cr	OK cr If
Reset Gate Mode 1 Flag (default =0)	RS sp 1601 cr	OK cr If
Read Gate Mode 2 Flag (default=0), close	RD sp 1602 cr	x cr lf
Gate after timeout		014
Set Gate Mode 2 Flag (default =0)	ST sp 1602 cr	OK cr If
Reset Gate Mode 2 Flag (default =0)	RS sp 1602 cr	OK cr If
Read Gate Mode 3 Flag (default=0), never	RD sp 1603 cr	x cr lf
close Gate automatically		
Set Gate Mode 3 Flag (default =0)	ST sp 1603 cr	OK cr If
Reset Gate Mode 3 Flag (default =0)	RS sp 1603 cr	OK cr If
Read Input- and Output Transfer Station	RD <i>sp</i> 1607 <i>cr</i>	x cr lf
selection		
Swap Input and Output Transfer Station	ST <i>sp</i> 1607 <i>cr</i>	OK cr If
Swap Transfer Stations to default position	RS <i>sp</i> 1607 <i>cr</i>	OK cr If
Read Handshake Mode flag (default =0)	RD <i>sp</i> 1610 <i>cr</i>	x cr lf
Activate Handshake Mode (default =0)	ST <i>sp</i> 1610 <i>cr</i>	OK cr If
De-activate Handshake Mode (default =0)	RS <i>sp</i> 1610 <i>cr</i>	OK cr If
Read Plate Trace selection	RD <i>sp</i> 1611 <i>cr</i>	x cr lf
Plate Trace on, stop on plate handling error	ST sp 1611 cr	OK cr If
Plate Trace off, do not check plate	RS sp 1611 cr	OK cr If
Read Wait Plate selection	RD sp 1612 cr	x cr lf
Wait Plate on, stop at x-fer station until plate	ST sp 1612 cr	OK cr If
present resp. x-fer station is free		
Wait Plate off, do not check x-fer station	RS sp 1612 cr	OK cr If
status		
Read Plate Verify selection	RD sp 1613 cr	x cr lf
Plate verify on, stop at x-fer station to allow	ST sp 1613 cr	OK cr If
BCR read		
Plate verify off	RS sp 1613 cr	OK cr If
Read User Door Lock door ¹ status	RD sp 1701 cr	x cr lf
Lock User door ²	ST sp 1701 cr	OK cr If
Unlock User door ³	RS <i>sp</i> 1701 <i>cr</i>	OK cr If
Read LED / Beeper Alarm status	RD sp 1702 cr	x cr lf
Activate LED- / Beeper Alarm	ST sp 1702 cr	OK cr If
De-activate LED- / Beeper Alarm	RS sp 1702 cr	OK cr If
Do BarCode Search Scan	ST sp 1710 cr	OK cr If
Scan one cassette ⁴	ST sp 1711 cr	OK cr If
Turn BCR on	ST sp 1712 cr	OK cr If
Turn BCR off	ST sp 1713 cr	OK cr If
BCR Reset	ST sp 1714 cr	OK cr If
Bortreoot		010111
Read Actual Slot Position n (02)	RD sp DM1 cr	nnnnn <i>cr lf</i>
Read Handler z-Offset (default = 600)	RD DM20 cr	ddddd <i>cr If</i>
Read Handler dz Pick- & Place-Movement in	RD DM21 cr	ddddd <i>cr</i> If
Stacker (default = 500)		
Read Handler In-Transfer z-Position (default	RD DM22 cr	ddddd cr If
~42'000)		
Read Handler z-Pitch (default =1925)	RD DM23 cr	ddddd <i>cr If</i>
•		

¹ available if door lock option present ² available if door lock option present ³ available if door lock option present ⁴ Requires 2-way communication feature

		DISCONTI
Read Handler Out-Transfer z-Position1	RD DM24 cr	ddddd cr If
Read Max. Number of Levels (default = 22)	RD DM25 cr	ddddd cr If
Read Handler dz Pick- & Place-Movement at	RD DM26 cr	ddddd <i>cr If</i>
Transfer Station (default = 800)		
Read BCR z-Lift Read Position offset (default	RD DM27 cr	ddddd <i>cr If</i>
~200)		
Read Handler dz Pick- & Place-Movement at	RD DM28 cr	ddddd <i>cr If</i>
Out-Transfer Station (default = 800)2		
Read Number of Cassettes	RD DM29 cr	ddddd <i>cr If</i>
Read Handler z-Offset right carrousel	RD DM35r	ddddd <i>cr If</i>
(STX1000)		
Read shaker speed (applies on systems with	RD DM39 cr	ddddd <i>cr If</i>
shaker option only) (default =25)		
Read carrousel rotation speed (default =50)	RD DM38 cr	ddddd <i>cr If</i>
Read number of carrousel positions	RD DM46 cr	ddddd <i>cr If</i>
Read Lift z-Offset of upper carrousel (applies	RD DM47 cr	ddddd <i>cr If</i>
on Bi-level option only) (default=12'400)		
Read number of levels of the (lower)	RD DM48 cr	ddddd <i>cr If</i>
carrousel (applies on Bi-Level option only)		
(default=22)		
Read Handler Left Stacker position (default	RD DM80 cr	ddddd <i>cr If</i>
~70)		
Read Handler Right Stacker position (default	RD DM81 cr	ddddd <i>cr If</i>
~940)		
Read Handler Transfer Station position	RD DM82 cr	ddddd <i>cr If</i>
(default ~3500)		
Set Handler z-Offset	MD DM20 on d or	OK cr If
Set Handler dz Pick- & Palce-Movement	WR DM20 sp d cr WR DM21 sp d cr	OK cr If
Set Handler In-Transfer z-Position	WR DM21 sp d cr WR DM22 sp d cr	OK cr If
Set Handler III-Transfer 2-Position	·	OK cr If
Set Handler Out-Transfer z-Position3	WR DM23 sp d cr WR DM24 sp d cr	OK cr If
Set Handler dz Pick- & Place-Movement at		OK cr If
Transfer Station	VVIX DIVIZO SP a CI	OR GI II
Set BCR z-Lift Read Position offset	WR DM27 sp d cr	OK cr If
Set Handler dz Pick- & Place Movement at	- 1-	OK cr If
Out-Transfer z-Position4	VVI C DIVIZO OP Q OI	010111
	WR DM35 sp d cr	OK cr If
(STX1000)	TTT BINGS OF G OF	010111
Set Carrousel rotation speed (range=180)	WR DM38 sp d cr	OK cr If
Set Shaker Speed (range=150)	WR DM39 sp d cr	OK cr If
Set Lift z-Offset of upper carrousel	WR DM47 sp d cr	OK cr If
Set number of levels of lower carrousel	WR DM48 sp d cr	OK cr If
Set left radial handler turn position at 1st	WR DM80 sp d cr	OK cr If
stacker	-r	
Set right radial handler turn position at 2 nd	WR DM81 sp d cr	OK cr If
stacker	·	
Set radial handler turn position at transfer	WR DM82 sp d cr	OK cr If
station		

d = data (Word=16Bit)

x = 0.1 (Word=16Bit)

1 Handler: DM24 = DM22 2 Handler: DM26 = DM28 3 StoreX: DM24 = DM22 4 StoreX: DM26 = DM28

t = actual value (Word=16Bit)

s = set value (Word=16Bit)

Note!

- > Z-height data memory values may be different on 3rd generation instruments due to different reduction ration of the lift drive
- ➤ Divide DM-values by four for 3rd generation instruments
- Always read DM values prior any change

1.3.4 Special Commands STP1000

Custom commands are commands defined for a specific application for. These commands will work on instruments supporting the specific application. These instruments may differ in their hardware configuration .

Special Commands for STP1000 support addressing the Tube Puncher Module (TPM).

	Command	Response
Select external TPM device for plate transfer	ST 1104 cr	OK cr If
Select standard transfer station for plate	RS 1104 cr	OK cr If
transfer		
Select lower level at TPM for plate transfer (Daughter Plate)	ST 1105 <i>cr</i>	OK cr If
Select upper level on TPM for plate transfer (Mother Plate)	RS 1105 cr	OK cr If
Read lift transfer height for plate transfer at TPM	RD DM41 cr	ddddd <i>cr If</i>
Read transfer height for plate transfer at upper level (Mother Plate)	RD DM42 cr	ddddd <i>cr If</i>
Read transfer height for plate transfer at lower level (Daughter Plate)	RD DM43 cr	ddddd <i>cr If</i>
Set lift transfer height for plate transfer at TPM to h1	WR DM41 sp h1 cr	OK cr If
Set plate transfer height for plate transfer at upper level (Mother Plate) in TPM to h2	WR DM42 sp h2 cr	OK cr If
Set plate transfer height for plate transfer at lower level (Daughter Plate) in TPM to h3	WR DM43 sp h3 cr	OK cr If

1.3.5 Cassette Configuration Look-up Table¹

Up to 20 types of cassette may be stored in the Cassette Type Look-up Table (CTT). The Data Memory area of the Cassette Type Look-up Table is DM230..DM250. At this time 14 cassettes types are pre-configured:

Used	TypeNr.	Туре	Pitch	Address	Content
+	0	MTP	23mm	DM230	788

¹ FW Version 7.1 and later only

+	1	DWP	50mm	DM231	1713
+	2		17mm	DM232	582
+	3		28mm	DM233	959
+	4		33mm	DM234	1131
+	5	DiTi200 ul	72mm	DM235	2467
+	6	DiTi1000 ul	110mm	DM236	3769
+	7	NTP	11mm	DM237	377
+	8		21mm	DM238	719
+	9		63mm	DM239	2158
+	10		20mm	DM240	
+	11		29mm	DM241	
+	12		35mm	DM242	
+	13		59mm	DM243	
+	14		75mm	DM244	
X	15			DM245	User
Х	16			DM246	User
Х	17			DM247	User
Х	18			DM248	User
Х	19			DM249	User
Х	20			DM250	User

Although we recommend to use pre-defined cassettes types unchanged, the user may alter pre-configured cassettes types.

Each cassette location has an assigned Data Memory location that represents its type of cassette and the numbers of levels of its cassette. These values are stored in the Cassette Configuration Table (CCT). The Cassette Configuration Table is located in DM251..DM499. DM251 represents cassette location number 1, DM252 cassette location number 2 .. A total of 250 cassettes can be configured.

Each entry of the Cassette Configuration Table contains the information about the type of the cassette and the number of levels of the cassette. This information is combined in one word (16Bit), where the lower byte contains the number of levels of the cassette and the higher byte the type of the cassette.

Example:

CrPos CsType	Туре	DM2	3x	ValHex	ValDec
1 2	5/33 8/23	4	251 252	\$040F \$001C	1039 28
3	2/23	ŏ	253	\$0016	22
4 5	8/17 5/33	2 4	254 255	\$021C \$040F	540 1039
6	7/72	5	256	\$0507	1287
7	0/50	1	257	\$010A	266

A cassette is addressed through the Cassette Configuration Table by entering a negative value in DM0 (16Bit). 'WR DM0 65535 would position the carrousel to location carrousel 1. When addressing the plate level (WR DM5 xx) the system automatically calculates the correct height of the plate by using the information of the Cassette Configuration Table.

1.3.6 Short Access Operations

The following commands allow extremely short and simple command sequences. When using short commands the plates are numbered from 1 to the maximum plate capacity. The maximum plate capacity is the value in DM25 (number of levels) multiplied with the value in DM29 (number of stackers). The way the plates are numbered can be selected. By default the plates are numbered beginning at the lowest level of stacker 1 to the top level of stacker 1, continuing at the lowest level of stacker 2 ending at the top level of stacker 2 (Vertical Mode). The optional numbering starts at the lowest level of stacker 1, lowest level of stacker 2, second level of stacker 1 etc. (Horizontal Mode).

	Command	Response
Import plate n	WR sp DM10 sp n cr	OK cr If
Export plate n	WR sp DM10 sp -n cr	OK cr If
Export plate n (unsigned alternative)	WR sp DM15 sp n cr	OK cr If
	·	
Select Vertical Numbering Mode (default)	ST sp 1604 cr	OK cr If
Select Horizontal Numbering Mode	RS sp 1604 cr	OK cr If

One Short Access Command can be sent while the prior access is being executed. This second command is stacked and executed after termination of the first command.

1.4 Handling Status / Error Messages

Error Commands are used when the handling detects an internal error (e.g. when loading a plate to an occupied location). In case of error the Error Flag (1814) is set from '0' to '1'. The exact cause of an error can be found in the data memory 200 (DM200). For each type of error an error code is set in DM200. The list below shows the meaning of the error code. Errors are read by reading the content of DM200. On a time-out, first the Error Flag is read (RD 1814). Then DM200 is read in order to find the cause of error. An error is reset by sending the Reset Command (ST 1900).

Errors DM200=1xx are Import Plate Errors, errors DM200=2xx are Export Plate Errors.

	Command	Response
Read Error Flag (default =0) Read Error Code	RD sp 1814 cr RD sp DM200 cr	x cr lf x cr lf

The following tables will list the StoreX status messages.

Error	Description	Code
General Handling Error	Handling action could not be performed in time.	00001 <i>cr</i> If
Gate Open Error	Gate could not reach upper position or Gate did not reach upper position in time	00007 cr lf
Gate Close Error	Gate could not reach lower position or Gate did not reach lower position in time	00008 cr If
General Lift Positioning Error	Handler-Lift could not reach desired level position or does not move	00009 cr If
User Access Error	Unauthorized user access in combination	00010 cr If

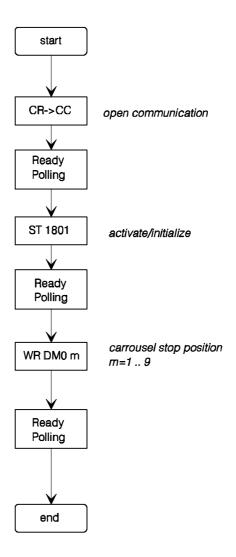
	with manual rotation of carrousel	
Stacker Slot Error	Stacker slot cannot be reached	00011 <i>cr</i> If
Remote Access Level Error	Undefined stacker level has been requested	00012 cr If
Plate Transfer Detection Error	Export operation while plate is on transfer station	00013 <i>cr</i> If
Lift Initialization Error	Lift could not be initialized	00014 cr If
Plate on Shovel Detection	Trying to load a plate, when a plate is already on the shovel	00015 cr If
No Plate on Shovel Detection	Trying to remove or place plate with no plate on the shovel	00016 cr If
No recovery	Recovery was not possible	00017 cr lf

Error	Description	Code
Import Plate Stacker Positioning Error	Carrousel could not reach desired radial position during Import Plate procedure or Lift could not reach transfer level during Import Plate procedure.	00100 cr lf
Import Plate Handler Transfer Turn out Error	Handler could not reach outer turn position at transfer level during Import Plate procedure.	00101 <i>cr If</i>
Import Plate Shovel Transfer Outer Error	Shovel could not reach outer position at transfer level during Import Plate procedure.	00102 <i>cr If</i>
Import Plate Lift Transfer Error	Lift did not reach upper pick position at transfer level during Import Plate procedure.	00103 cr If
Import Plate Shovel Transfer Inner Error	Shovel could not reach inner position at transfer level during Import Plate procedure.	00104 cr If
Import Plate Handler Transfer Turn in Error	Handler could not reach inner turn position at transfer level during Import Plate procedure.	00105 <i>cr lf</i>
Import Plate Lift Stacker Travel Error	Lift could not reach desired stacker level during Import Plate procedure.	00106 cr lf
Import Plate Shovel Stacker Front Error	Shovel could not reach front position on stacker access during Plate Import procedure.	00107 cr If
Import Plate Lift Stacker Place Error	Lift could not reach stacker place level during Import Plate procedure.	00108 <i>cr</i> If
Import Plate Shovel Stacker Inner Error	Shovel could not reach inner position at stacker plate placement during Import Plate procedure.	00109 cr If
Import Plate Lift Travel Back Error	Lift could not reach zero level during Import Plate procedure.	00110 cr lf
Import Plate Lift Init Error	Lift could not be initialized after Import Plate procedure.	00111 <i>cr lf</i>

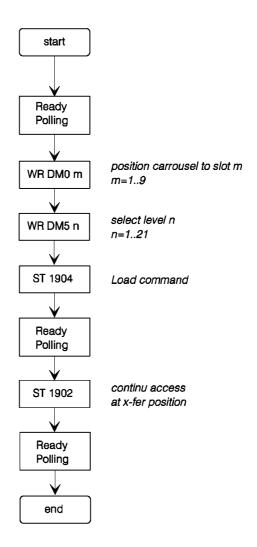
Error	Description	Code
Export Plate Lift Stacker Travel Error	Carrousel could not reach desired radial position during Export Plate procedure or Lift could not reach desired stacker level during Exoprt Plate procedure.	00200 cr If
Export Plate Shovel Stacker Front Error	Shovel could not reach front position on stacker access during Plate Export procedure.	00201 cr If
Export Plate Lift Stacker Import Error	Lift could not reach stacker pick level during Export Plate procedure.	00202 cr If
Export Plate Shovel Stacker Inner Error	Shovel could not reach inner position at stacker plate pick during Export Plate procedure.	00203 cr If
Export Plate Lift Transfer Positioning Error	Lift could not reach transfer level during Export Plate procedure.	00204 cr If
Export Plate Handler Transfer Turn out Error	Handler could not reach outer turn position at transfer level during Export Plate procedure.	00205 cr If
Export Plate Shovel Transfer Outer Error	Shovel could not reach outer position at transfer level during Export Plate procedure.	00206 cr If
Export Plate Lift Transfer Place Error	Lift did not reach lower place position at transfer level during Export Plate procedure.	00207 cr If
Export Plate Shovel Transfer Inner Error	Shovel could not reach inner position at transfer level during Export Plate procedure.	00208 cr If
Export Plate Handler Transfer Turn in Error	Handler could not reach inner turn position at transfer level during Export Plate procedure.	00209 cr If
Export Plate Lift Travel Back Error	Lift could not reach Zero position during Export Plate procedure.	00210 cr If
Export Plate Lift Initializing Error	Lift could not be initialized after Export Plate procedure.	00211 <i>cr If</i>

Error	Description	Code
Exit Plate Errors (1906)	Errors as above but in conjunction with Remove Plate Command	003xx cr lf
Barcode Read Errors (1910)	Errors as above but in conjunction with BCR Command	004xx cr lf
Place Plate Errors (1909)	Errors as above but in conjunction with Place Plate Command	005xx cr lf
Enter Plate Errors (1907)	Errors as above but in conjunction with Set Plate Command	006xx cr lf
Pick Plate Errors (1908)	Errors as above but in conjunction with Get Plate Command	007xx cr lf

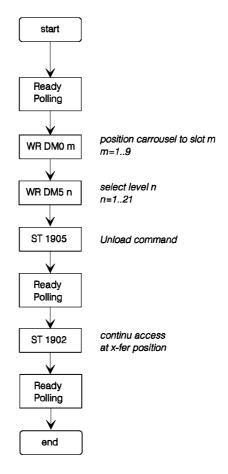
The following example will show how the Ready Polling can be combined with the continuous system status request. The program below will display details of the handling actions of the StoreX handler. In combination with data base detailed status reports can be output real-time to the operator all time.




```
PROCEDURE STX_waitReadyTrace(portNbr:INTEGER);
VAR c:CHAR; x,y,err:INTEGER; n:WORD;
BEGIN
  WRITE(' ');
  x:=WhereX; y:=WhereY;
  DelayMs(300);
WHILE (STX_Read(prtNbr,1915)='0') AND NOT(KeyPressed) DO
    BEGIN
        DelayMs(100);
        GotoXY(x,y);
    Val(STX_ReadDataMemory(portNbr,200,n,err); WRITE(n:3)
        END
END;
```


1.5 Program Examples

Cold Start with Positioning


Load Access to Slot m Level n

Unload Access from Slot m Level n

A universally usable procedure which can be used for most StoreX commands is given below. Use this procedure after initializing the instrument only.

```
PROCEDURE STX_DoPlate(pN,slot,level:INTEGER; command:STRING);
BEGIN
    IF NOT(KeyPressed) THEN
    BEGIN
        STX_WaitReady(pN);
        STX_WriteDataMemory(pN,0,slot);
        STX_WriteDataMemory(pN,5,level);
        STX_Set(pN,command);
        STX_WaitReadyTrace(portNbr)
        END;
END;
```


2. Utility Software

LiCONiC R&D 01-06-96 C.G.Malin 09:04:01

HBI-UserSoft * V 0.04, 25.05.96

		S-Nbr
t Commands	1	
or Flags	2	
s	3	
Positioning Times	4	
m Positioning	5	
m Access Cycles	6	
m Fast Access	7	
	0	
	t Commands or Flags s Positioning Times m Positioning m Access Cycles m Fast Access	or Flags 2 s 3 Positioning Times 4 m Positioning 5 m Access Cycles 6 m Fast Access 7

Enter [0..7]

2.1.1 Direct Commands

Direct entering of commands (ASCII-Characters) and sending to the Handling Controller. The commands can be entered as capital letters or Prompt entries by Return.

Enter direct commands to KV-PLC, press q to quit

_

2.1.2 Monitor Flags

P0	0000	Rot.EN	0500
Pn	0001	GateEN	0501
GtClse	0002	GateEN	0502
Gt0pen	0003	Rot.Dir	0503
	0004	GtTmOut	0504
F.Door	0005	AccsLED	0505
SW 2E0	0006		
SW 2E1	0007		
SW 2E2	8000		
SW 2E3	0009		
Acs.	1100		
Key Valid			
InPos			

RotPos. DM01 Accs. DM00 AccV. DM02

SetSpd. DM91 aSlpe. DM92 bSlpe. DM93 intvl. DM94

_

Ready 1915

Status Flag of the Handling Controller. The status message "0" means inactive, the status message "1" means active.

Code	Status Flag	Comment
P0	0000	0-initiator of carrousel
Pn	0001	Position-initiator of carrousel
GtClse	0002	Gate closed switch
GtOpen	0003	Gate opened switch
KeySw	0004	Key switch
Gn LED	0005	Green LED
SW 2E0	0006	Manual positioning switch bit0
SW 2E1	0007	Manual positioning switch bit1
SW 2E2	0008	Manual positioning switch bit2
SW 2E3	0009	Manual positioning switch bit3
Acs.	1100	Carrousel access (remote or manual)
Key Valid		Manual positioning switch valid
Ready	1915	Ready-Bit
Rot.Pos.	DM1	Actual carrousel position
Access.	DM0	Carrousel set position
AccV.	DM2	Access accepted

2.1.3 Macros

Sending of complete, preprogrammed command sequences.

Function	Command	Key
Rot. Position	WR DMO x	19
Enable Rotation	WR DMO 0	0
Gate Open	ST 1901	0
Gate Close	ST 1902	С
End Access	ST 1903	E
Shaker ON	ST 1907	S
Shaker OFF	RS 1907	F
CarAct ON	ST 1801	A
CarAct OFF	RS 1801	D
Command Reset	ST 1900	R
Quit		esc
Ready [1915]		
Please Select ->	_	

Code	Comment
0 1.9	No access, carrousel rotation enabled Position carrousel
O C R	Gate open (only when carrousel is positioned) Gate closed Reset Handling Controller
Q	Exit macro menu
Accs. Ready	Carrousel access (remote or manual) Ready-Bit

2.1.4 Teach Positioning Times

Program to measure positioning times of the carrousel.

The program starts positioning automatically. As a result a table containing the measured positioning times is presented.

2.1.5 Random Positioning

Program for positioning the carrousel randomly without gate movements. After entering the access intervals the program continuously simulates accesses at random positions until the "q-Key" is pressed. As a result a table containing statistical data is presented.

If an error of positioning time larger then 0.4 seconds compared with the calibrated positioning time is observed a positioning error is assumed and monitored.

2.1.6 Random Access Cycles

Program for positioning the carrousel randomly including gate movements. After entering the access intervals the program continuously simulates accesses at random positions until the "q-Key" is pressed. As a result a table containing statistical data is presented.

If an error of positioning time larger then 0.4 seconds compared with the calibrated positioning time is observed a positioning error is assumed and monitored.

2.1.7 Random Fast Access

Program for positioning the carrousel randomly including combined positioning-gate movements commands.

After entering the access intervals the program continuously simulates accesses at random positions until the "q-Key" is pressed. As a result a table containing statistical data is presented.

If an error of positioning time larger then 0.4 seconds compared with the calibrated positioning time is observed a positioning error is assumed and monitored.

